Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(5): 056602, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364137

RESUMO

The formation of a topological superconducting phase in a quantum-dot-based Kitaev chain requires nearest neighbor crossed Andreev reflection and elastic cotunneling. Here, we report on a hybrid InSb nanowire in a three-site Kitaev chain geometry-the smallest system with well-defined bulk and edge-where two superconductor-semiconductor hybrids separate three quantum dots. We demonstrate pairwise crossed Andreev reflection and elastic cotunneling between both pairs of neighboring dots and show sequential tunneling processes involving all three quantum dots. These results are the next step toward the realization of topological superconductivity in long Kitaev chain devices with many coupled quantum dots.

2.
Nat Commun ; 14(1): 6880, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898657

RESUMO

Semiconductor nanowires coupled to superconductors can host Andreev bound states with distinct spin and parity, including a spin-zero state with an even number of electrons and a spin-1/2 state with odd-parity. Considering the difference in spin of the even and odd states, spin-filtered measurements can reveal the underlying ground state. To directly measure the spin of single-electron excitations, we probe an Andreev bound state using a spin-polarized quantum dot that acts as a bipolar spin filter, in combination with a non-polarized tunnel junction in a three-terminal circuit. We observe a spin-polarized excitation spectrum of the Andreev bound state, which can be fully spin-polarized, despite strong spin-orbit interaction in the InSb nanowires. Decoupling the hybrid from the normal lead causes a current blockade, by trapping the Andreev bound state in an excited state. Spin-polarized spectroscopy of hybrid nanowire devices, as demonstrated here, is proposed as an experimental tool to support the observation of topological superconductivity.

3.
Nat Commun ; 14(1): 3325, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286544

RESUMO

The proximity effect in semiconductor-superconductor nanowires is expected to generate an induced gap in the semiconductor. The magnitude of this induced gap, together with the semiconductor properties like spin-orbit coupling and g-factor, depends on the coupling between the materials. It is predicted that this coupling can be adjusted through the use of electric fields. We study this phenomenon in InSb/Al/Pt hybrids using nonlocal spectroscopy. We show that these hybrids can be tuned such that the semiconductor and superconductor are strongly coupled. In this case, the induced gap is similar to the superconducting gap in the Al/Pt shell and closes only at high magnetic fields. In contrast, the coupling can be suppressed which leads to a strong reduction of the induced gap and critical magnetic field. At the crossover between the strong-coupling and weak-coupling regimes, we observe the closing and reopening of the induced gap in the bulk of a nanowire. Contrary to expectations, it is not accompanied by the formation of zero-bias peaks in the local conductance spectra. As a result, this cannot be attributed conclusively to the anticipated topological phase transition and we discuss possible alternative explanations.

4.
Nature ; 614(7948): 445-450, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36792741

RESUMO

Majorana bound states constitute one of the simplest examples of emergent non-Abelian excitations in condensed matter physics. A toy model proposed by Kitaev shows that such states can arise at the ends of a spinless p-wave superconducting chain1. Practical proposals for its realization2,3 require coupling neighbouring quantum dots (QDs) in a chain through both electron tunnelling and crossed Andreev reflection4. Although both processes have been observed in semiconducting nanowires and carbon nanotubes5-8, crossed-Andreev interaction was neither easily tunable nor strong enough to induce coherent hybridization of dot states. Here we demonstrate the simultaneous presence of all necessary ingredients for an artificial Kitaev chain: two spin-polarized QDs in an InSb nanowire strongly coupled by both elastic co-tunnelling (ECT) and crossed Andreev reflection (CAR). We fine-tune this system to a sweet spot where a pair of poor man's Majorana states is predicted to appear. At this sweet spot, the transport characteristics satisfy the theoretical predictions for such a system, including pairwise correlation, zero charge and stability against local perturbations. Although the simple system presented here can be scaled to simulate a full Kitaev chain with an emergent topological order, it can also be used imminently to explore relevant physics related to non-Abelian anyons.

5.
Nature ; 612(7940): 448-453, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36418399

RESUMO

In most naturally occurring superconductors, electrons with opposite spins form Cooper pairs. This includes both conventional s-wave superconductors such as aluminium, as well as high-transition-temperature, d-wave superconductors. Materials with intrinsic p-wave superconductivity, hosting Cooper pairs made of equal-spin electrons, have not been conclusively identified, nor synthesized, despite promising progress1-3. Instead, engineered platforms where s-wave superconductors are brought into contact with magnetic materials have shown convincing signatures of equal-spin pairing4-6. Here we directly measure equal-spin pairing between spin-polarized quantum dots. This pairing is proximity-induced from an s-wave superconductor into a semiconducting nanowire with strong spin-orbit interaction. We demonstrate such pairing by showing that breaking a Cooper pair can result in two electrons with equal spin polarization. Our results demonstrate controllable detection of singlet and triplet pairing between the quantum dots. Achieving such triplet pairing in a sequence of quantum dots will be required for realizing an artificial Kitaev chain7-9.

6.
Adv Mater ; 34(33): e2202034, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35680622

RESUMO

In superconducting quantum circuits, aluminum is one of the most widely used materials. It is currently also the superconductor of choice for the development of topological qubits. However, aluminum-based devices suffer from poor magnetic field compatibility. Herein, this limitation is resolved by showing that adatoms of heavy elements (e.g., platinum) increase the critical field of thin aluminum films by more than a factor of two. Using tunnel junctions, it is shown that the increased field resilience originates from spin-orbit scattering introduced by Pt. This property is exploited in the context of the superconducting proximity effect in semiconductor-superconductor hybrids, where it is shown that InSb nanowires strongly coupled to Al/Pt films can maintain superconductivity up to 7 T. The two-electron charging effect is shown to be robust against the presence of heavy adatoms. Additionally, non-local spectroscopy is used in a three-terminal geometry to probe the bulk of hybrid devices, showing that it remains free of sub-gap states. Finally, it is demonstrated that proximitized semiconductor states maintain their ability to Zeeman-split in an applied magnetic field. Combined with the chemical stability and well-known fabrication routes of aluminum, Al/Pt emerges as the natural successor to Al-based systems and is a compelling alternative to other superconductors, whenever high-field resilience is required.

7.
Phys Rev Lett ; 129(26): 267701, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36608192

RESUMO

Semiconductor quantum dots have proven to be a useful platform for quantum simulation in the solid state. However, implementing a superconducting coupling between quantum dots mediated by a Cooper pair has so far suffered from limited tunability and strong suppression. This has limited applications such as Cooper pair splitting and quantum dot simulation of topological Kitaev chains. In this Letter, we propose how to mediate tunable effective couplings via Andreev bound states in a semiconductor-superconductor nanowire connecting two quantum dots. We show that in this way it is possible to individually control both the coupling mediated by Cooper pairs and by single electrons by changing the properties of the Andreev bound states with easily accessible experimental parameters. In addition, the problem of coupling suppression is greatly mitigated. We also propose how to experimentally extract the coupling strengths from resonant current in a three-terminal junction. Our proposal will enable future experiments that have not been possible so far.

8.
Sci Rep ; 10(1): 15080, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934286

RESUMO

When making important decisions such as choosing health insurance or a school, people are often uncertain what levels of attributes will suit their true preference. After choice, they might realize that their uncertainty resulted in a mismatch: choosing a sub-optimal alternative, while another available alternative better matches their needs. We study here the overall impact, from a central planner's perspective, of decisions under such uncertainty. We use the representation of Voronoi tessellations to locate all individuals and alternatives in an attribute space. We provide an expression for the probability of correct match, and calculate, analytically and numerically, the average percentage of matches. We test dependence on the level of uncertainty and location. We find that the overall mismatch  is considerable even for low uncertainty-a possible concern for policy makers. We further explore a commonly used practice-allocating service representatives to assist individuals' decisions. We show that within a given budget and uncertainty level, the effective allocation is for individuals who are close to the boundary between several Voronoi cells, but are not right on the boundary.

9.
Nat Commun ; 11(1): 3408, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641683

RESUMO

Energy spectroscopy of strongly interacting phases requires probes which minimize screening while retaining spectral resolution and local sensitivity. Here, we demonstrate that such probes can be realized using atomic sized quantum dots bound to defects in hexagonal Boron Nitride tunnel barriers, placed at nanometric distance from graphene. With dot energies capacitively tuned by a planar graphite electrode, dot-assisted tunneling becomes highly sensitive to the graphene excitation spectrum. The spectra track the onset of degeneracy lifting with magnetic field at the ground state, and at unoccupied excited states, revealing symmetry-broken gaps which develop steeply with magnetic field - corresponding to Landé g factors as high as 160. Measured up to B = 33 T, spectra exhibit a primary energy split between spin-polarized excited states, and a secondary spin-dependent valley-split. Our results show that defect dots probe the spectra while minimizing local screening, and are thus exceptionally sensitive to interacting states.

10.
Phys Rev Lett ; 123(21): 217003, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31809137

RESUMO

Quantum dots proximity coupled to superconductors are attractive research platforms due to the intricate interplay between the single-electron nature of the dot and the many body nature of the superconducting state. These have been studied mostly using nanowires and carbon nanotubes, which allow a combination of tunability and proximity. Here we report a new type of quantum dot which allows proximity to a broad range of superconducting systems. The dots are realized as embedded defects within semiconducting tunnel barriers in van der Waals layers. By placing such layers on top of thin NbSe_{2}, we can probe the Andreev bound state spectra of such dots up to high in-plane magnetic fields without observing the effects of a diminishing superconducting gap. As tunnel junctions defined on NbSe_{2} have a hard gap, we can map the subgap spectra without a background related to the rest of the junction. We find that the proximitized defect states invariably have a singlet ground state, manifest in the Zeeman splitting of the subgap excitation. We also find, in some cases, bound states that converge to zero energy and remain there. We discuss the role of the spin-orbit term, present both in the barrier and the superconductor, in the realization of such topologically trivial zero-energy states.

11.
Nano Lett ; 19(8): 5167-5175, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31361954

RESUMO

Hybrid ferromagnetic/superconducting systems are well-known for hosting intriguing phenomena such as emergent triplet superconductivity at their interfaces and the appearance of in-gap, spin-polarized Yu-Shiba-Rusinov (YSR) states bound to magnetic impurities on a superconducting surface. In this work we demonstrate that similar phenomena can be induced on a surface of a conventional superconductor by chemisorbing nonmagnetic chiral molecules. Conductance spectra measured on NbSe2 flakes over which chiral α-helix polyalanine molecules were adsorbed exhibit, in some cases, in-gap states nearly symmetrically positioned around zero bias that shift with magnetic field, akin to YSR states, as corroborated by theoretical simulations. Other samples show evidence for a collective phenomenon of hybridized YSR-like states giving rise to unconventional, possibly triplet superconductivity, manifested in the conductance spectra by the appearance of a zero bias conductance that diminishes, but does not split, with magnetic field. The transition between these two scenarios appears to be governed by the density of adsorbed molecules.

12.
Nano Lett ; 18(12): 7845-7850, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30475631

RESUMO

We have performed device-based tunneling spectroscopy of NbSe2 in the vortex state with a magnetic field applied both parallel and perpendicular to the a- b plane. Our devices consist of layered semiconductors placed on top of exfoliated NbSe2 using the van der Waals transfer technique. At zero field, the spectrum exhibits a hard gap, and the quasiparticle peak is split into low- and high-energy features. The two features, associated with the effective two-band nature of superconductivity in NbSe2, exhibit markedly distinct responses to the application of magnetic field, suggesting an order-of-magnitude difference in the spatial extent of the vortex cores of the two bands. At energies below the superconducting gap, the hard gap gives way to vortex-bound Caroli-de Gennes-Matricon states, allowing the detection of individual vortices as they enter and exit the junction. Analysis of the subgap spectra upon application of parallel magnetic field allows us to track the process of vortex surface formation and spatial rearrangement in the bulk.

13.
Biophys J ; 112(10): 2184-2195, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28538155

RESUMO

Bacterial mobility is powered by rotation of helical flagellar filaments driven by rotary motors. Flagellin isolated from the Salmonella Typhimurium SJW1660 strain, which differs by a point mutation from the wild-type strain, assembles into straight filaments in which flagellin monomers are arranged in a left-handed helix. Using small-angle x-ray scattering and osmotic stress methods, we investigated the structure of SJW1660 flagellar filaments as well as the intermolecular forces that govern their assembly into dense hexagonal bundles. The scattering data were fitted to models, which took into account the atomic structure of the flagellin subunits. The analysis revealed the exact helical arrangement and the super-helical twist of the flagellin subunits within the filaments. Under osmotic stress, the filaments formed two-dimensional hexagonal bundles. Monte Carlo simulations and continuum theories were used to analyze the scattering data from hexagonal arrays, revealing how the bundle bulk modulus and the deflection length of filaments in the bundles depend on the applied osmotic stress. Scattering data from aligned flagellar bundles confirmed the theoretically predicated structure-factor scattering peak line shape. Quantitative analysis of the measured equation of state of the bundles revealed the contributions of electrostatic, hydration, and elastic interactions to the intermolecular forces associated with bundling of straight semi-flexible flagellar filaments.


Assuntos
Flagelos/metabolismo , Simulação por Computador , Elasticidade , Flagelos/química , Flagelina/metabolismo , Modelos Moleculares , Método de Monte Carlo , Pressão Osmótica , Pressão , Salmonella typhimurium , Espalhamento a Baixo Ângulo , Difração de Raios X
14.
Langmuir ; 33(23): 5636-5641, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28514855

RESUMO

The interaction between multivalent ions and lipid membranes with saturated tails and dipolar (net neutral) headgroups can lead to adsorption of the ions onto the membrane. The ions charge the membranes and contribute to electrostatic repulsion between them, in a similar manner to membranes containing charged lipids. Using solution X-ray scattering and the osmotic stress method, we measured and modeled the pressure-distance curves between partially charged membranes containing mixtures of charged (1,2-dilauroyl-sn-glycero-3-phospho-l-serine, DLPS) and dipolar (1,2-dilauroyl-sn-glycero-3-phosphocholine, DLPC) lipids over a wide range of membrane charge densities. We then compared these pressure-distance curves with those of DLPC membranes in the presence of 10 mM CaCl2. Our data and modeling show that when low osmotic stress is applied to the DLPC bilayers, the membrane charge density is equivalent to that of a charged membrane containing ca. 4 mol % DLPS and 96 mol % DLPC. As the osmotic stress increased, the charge density of the DLPC membrane decreased and resembled that of a membrane containing ca. 1 mol % DLPS. These data are consistent with desorption of the calcium ions from the DLPC membrane with increasing osmotic stress.


Assuntos
Pressão Osmótica , Cálcio , Cátions , Bicamadas Lipídicas , Lipídeos , Eletricidade Estática
15.
Langmuir ; 30(49): 14725-33, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25386894

RESUMO

Ionic liquids have a variety of unique controllable structures and properties. These properties may be used to tailor the self-assembly of charged and dipolar biomolecules. Using solution X-ray scattering, we measured the structure of Dilauryl(C12:0)-sn-glycero-3-phospho-l-choline (DLPC), a dipolar (or zwitterionic) lipid, in the water-soluble room temperature ionic liquid Ethyl Methyl Imidazolium Ethyl Sulfate (EMIES) and mixtures of EMIES and water. We find that the interaction between the lipid bilayers is dominated by the balance between the charging of the polar headgroups by the ionic liquid, softening of the bilayer, and the osmotic pressure induced by the solvent. This balance leads to the following changes with increasing ionic liquid concentration: an incomplete unbinding transition from an attractive regime to a swollen regime of the lamellar phase formed by the bilayers. The swollen phase is followed by a collapse of the bilayers into a highly desolvated lamellar phase at some critical EMIES concentration, and eventually formation of lipid-crystalline phase, at very high EMIES concentrations. The latter phase is revealed by wide-angle X-ray scattering (WAXS) from the lipid solutions, showing multiple Bragg peaks, consistent with highly ordered structures. These structures were not observed in any other type of aqueous solutions containing monovalent or multivalent ions. The kinetics and temperature dependence of these transitions were also determined.

16.
J Phys Chem B ; 116(11): 3519-24, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22352342

RESUMO

It is well-known that phospholipids in aqueous environment self-assemble into lamellar structures with a repeat distance governed by the interactions between them. Yet, the understanding of these interactions is incomplete. In this paper, we study the effect of temperature on the interlamellar interactions between dipolar membranes. Using solution small-angle X-ray scattering (SAXS), we measured the repeat distance between 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) bilayers at different temperatures and osmotic stresses. We found that when no pressure is applied the lamellar repeat distance, D, decreases and then increases with increasing temperature. As the osmotic stress increases, D decreases with temperature and then increases to a limited extent, until at sufficiently high pressure D decreases with temperature in all the examined range. We then reconstructed experimentally the equation of state and fit it with a modified interaction model that takes into account the temperature dependence of the fluctuation term. Finally, we showed how the thickness of DLPC membranes decreases with temperature.


Assuntos
Bicamadas Lipídicas/química , Temperatura , Dimiristoilfosfatidilcolina/química , Espalhamento a Baixo Ângulo , Difração de Raios X
17.
Langmuir ; 28(5): 2604-13, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22191627

RESUMO

Like-charged solid interfaces repel and separate from one another as much as possible. Charged interfaces composed of self-assembled charged-molecules such as lipids or proteins are ubiquitous. The present study shows that although charged lipid-membranes are sufficiently rigid, in order to swell as much as possible, they deviate markedly from the behavior of typical like-charged solids when diluted below a critical concentration (ca. 15 wt %). Unexpectedly, they swell into lamellar structures with spacing that is up to four times shorter than the layers should assume (if filling the entire available space). This process is reversible with respect to changing the lipid concentration. Additionally, the research shows that, although the repulsion between charged interfaces increases with temperature, like-charged membranes, remarkably, condense with increasing temperature. This effect is also shown to be reversible. Our findings hold for a wide range of conditions including varying membrane charge density, bending rigidity, salt concentration, and conditions of typical living systems. We attribute the limited swelling and condensation of the net repulsive interfaces to their self-assembled character. Unlike solids, membranes can rearrange to gain an effective entropic attraction, which increases with temperature and compensates for the work required for condensing the bilayers. Our findings provide new insight into the thermodynamics and self-organization of like-charged interfaces composed of self-assembled molecules such as charged biomaterials and supramolecular assemblies that are widely found in synthetic and natural constructs.


Assuntos
Entropia , Bicamadas Lipídicas/química , Lipídeos/síntese química , Lipídeos/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Propriedades de Superfície
18.
J Phys Chem B ; 115(49): 14501-6, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21988313

RESUMO

Interactions between charged and neutral self-assembled phospholipid membranes are well understood and take into account temperature dependence. Yet, the manner in which the structure of the membrane is affected by temperature was hardly studied. Here we study the effect of temperature on the thickness, area per lipid, and volume per lipid of charged membranes. Two types of membranes were studied: membranes composed of charged lipids and dipolar (neutral) membranes that adsorbed divalent cations and became charged. Small-angle X-ray scattering data demonstrate that the thickness of charged membranes decreases with temperature. Wide-angle X-ray scattering data show that the area per headgroup increases with temperature. Intrinsically charged membranes linearly thin with temperature, whereas neutral membranes that adsorb divalent ions and become charged show an exponential decrease of their thickness. The data indicate that, on average, the tails shorten as the temperature rises. We attribute this behavior to higher lipid tail entropy and to the weaker electrostatic screening of the charged headgroups, by their counterions, at elevated temperatures. The latter effect leads to stronger electrostatic repulsion between the charged headgroups that increases the area per headgroup and decreases the bilayer thickness.


Assuntos
Bicamadas Lipídicas/química , Temperatura , Entropia , Espalhamento a Baixo Ângulo , Eletricidade Estática , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...